172 research outputs found

    How Can Microarrays Unlock Asthma?

    Get PDF
    Asthma is a complex disease regulated by the interplay of a large number of underlying mechanisms which contribute to the overall pathology. Despite various breakthroughs identifying genes related to asthma, our understanding of the importance of the genetic background remains limited. Although current therapies for asthma are relatively effective, subpopulations of asthmatics do not respond to these regimens. By unlocking the role of these underlying mechanisms, a source of novel and more effective treatments may be identified. In the new age of high-throughput technologies, gene-expression microarrays provide a quick and effective method of identifying novel genes and pathways, which would be impossible to discover using an individual gene screening approach. In this review we follow the history of expression microarray technologies and describe their contributions to advancing our current knowledge and understanding of asthma pathology

    Chronic lung diseases:entangled in extracellular matrix

    Get PDF
    The extracellular matrix (ECM) is the scaffold that provides structure and support to all organs, including the lung; however, it is also much more than this. The ECM provides biochemical and biomechanical cues to cells that reside or transit through this micro-environment, instructing their responses. The ECM structure and composition changes in chronic lung diseases; how such changes impact disease pathogenesis is not as well understood. Cells bind to the ECM through surface receptors, of which the integrin family is one of the most widely recognised. The signals that cells receive from the ECM regulate their attachment, proliferation, differentiation, inflammatory secretory profile and survival. There is extensive evidence documenting changes in the composition and amount of ECM in diseased lung tissues. However, changes in the topographical arrangement, organisation of the structural fibres and stiffness (or viscoelasticity) of the matrix in which cells are embedded have an undervalued but strong impact on cell phenotype. The ECM in diseased lungs also changes in physical and biomechanical ways that drive cellular responses. The characteristics of these environments alter cell behaviour and potentially orchestrate perpetuation of lung diseases. Future therapies should target ECM remodelling as much as the underlying culprit cells

    The cellular composition of the lung lining fluid gradually changes from bronchus to alveolus

    Get PDF
    Although large advances have recently been made mapping out the cellular composition of lung tissue using single cell sequencing, the composition and distribution of the cellular elements within the lining fluid of the lung has not been extensively studied. Here, we assessed the cellular composition of the lung lining fluid by performing a differential cell analysis on bronchoalveolar lavage fluid (BALF) and epithelial lining fluid (ELF) at four different locations within the lung in post-lung transplantation patients. The percentage of neutrophils and lymphocytes is reduced in more distal regions of the lungs, while the percentage of macrophages increases in these more distal regions. These data provide valuable information to determine which lung lining fluid sampling technique and location is best to use for measuring specific factors and biomarkers, and to increase the understanding of different cell populations in specific lung regions

    The development, validation, and in vivo testing of a high-precision bronchial epithelial lining fluid sampling device.

    Get PDF
    INTRODUCTION: Analysis of respiratory biomarkers or pharmaceutical drug concentrations in bronchial epithelial lining fluid (bELF) using a high-precision sampling method is crucial for effective clinical respiratory diagnostics and research. Here, we utilized a cellulose matrix as an absorptive probe for bELF sampling, subsequently testing the design of a device and sampling technique in vivo. METHODS: The absorptive matrix [Whatman® qualitative filter paper (Grade CF-12)] was first tested through tissue-contact experiments on porcine airway tissue. The absorption and elution capacity of the matrix, as well as the laboratory processing and analysis method, was validated with a range of Interleukin-8 (CXCL8) and C-Reactive protein (CRP) stock solutions. Subsequently, the device's design was optimized for universal in-house production and both, safe and efficient sampling. The airway sampling method was then tested in a group of 10 patients with Chronic Obstructive Pulmonary Disease (COPD). For each patient, a bELF sample was obtained using the newly developed bELF probe, as well as a reference 20 mL saline bronchial wash sample. Supernatants were assessed, using an immunoassay, for levels of the pro-inflammatory markers CXCL8, Myeloperoxidase (MPO), and CRP. The bELF samples were compared to bronchial wash. RESULTS: The Whatman® qualitative filter paper (Grade CF-12) bELF probes adhered to porcine airway tissue, softening slightly upon wetting. The material maintained architectural integrity following the removal of the probes, leaving no residual fibers on the porcine airway mucosa. The bELF probe design was optimized for bronchoscopic delivery and in-house production. On average, a fully saturated bELF probe carried 32 μL of protein-rich fluid. The mean return of CXCL8 and CRP from samples collected from a serial dilution series (1, 5, 10, 20 ng/mL) was 69% (range 48%-87%). The bELF probe detected, on average, 7 (MPO), 14 (CRP), and 59 (CXCL8) times higher equivalent inflammatory protein concentrations in the collected bELF probe samples compared to the bronchial wash. CONCLUSION: The bELF probe is an effective absorptive technology for high-precision bELF sampling without dilution. With a simple in-house production procedure and bronchoscopic sampling technique, this method can be introduced in any bronchoscopic center for a consistent sampling of bELF.</p

    Topography-Mediated Fibroblast Cell Migration Is Influenced by Direction, Wavelength, and Amplitude

    Get PDF
    Biophysical stimuli including topography play a crucial role in the regulation of cell morphology, adhesion, migration, and cytoskeleton organization and have been known to be important in biomaterials design for tissue engineering. However, little is known about the individual effects of topographic direction, structure repetition, and feature size of the substrate on which wound healing occurs. We report on the design of a topographical gradient with wavelike features that gradually change in wavelength and amplitude, which provides an efficient platform for an in vitro wound healing assay to investigate fibroblast migration. The wound coverage rate was measured on selected areas with wavelength sizes of 2, 5, and 8 mu m in perpendicular and parallel orientations. Furthermore, a method was developed to produce independently controlled wavelength and amplitude and study which parameter has greater influence. Cell movement was guided by topographical properties, with a lower wrinkle wavelength (2 mu m) eliciting the fastest migration speed, and the migration speed increased with decreasing amplitude. However, when the amplitudes were matched, cells migrated faster on a larger wavelength. This study also highlights the sensitivity of fibroblasts to the topographic orientation, with cells moving faster in the parallel direction of the topography. The overall behavior indicated that the wavelength and amplitude both play an important role in directing cell migration. The collective cell migration was found not to be influenced by altered cell proliferation. These findings provide key insights into topography-triggered cell migration and indicate the necessity for better understanding of material-directed wound healing for designing bio-inductive biomaterials

    Therapeutic Targeting of IL-11 for Chronic Lung Disease

    Get PDF
    Interleukin (IL)-11 was originally recognized as an immunomodulatory and hematopoiesis-inducing cytokine. However, although IL-11 is typically not found in healthy individuals, it is now becoming evident that IL-11 may play a role in diverse pulmonary conditions, including IPF, asthma, and lung cancer. Additionally, experimental strategies targeting IL-11, such as humanized antibodies, have recently been developed, revealing the therapeutic potential of IL-11. Thus, further insight into the underlying mechanisms of IL-11 in lung disease may lead to the ability to interfere with pathological conditions that have a clear need for disease-modifying treatments, such as IPF. In this review, we outline the effects, expression, signaling, and crosstalk of IL-11 and focus on its role in lung disease and its potential as a therapeutic target

    Combined Beta-Agonists and Corticosteroids Do Not Inhibit Extracellular Matrix Protein Production In Vitro

    Get PDF
    Background. Persistent asthma is characterized by airway remodeling. Whereas we have previously shown that neither β2-agonists nor corticosteroids inhibit extracellular matrix (ECM) protein release from airway smooth muscle (ASM) cells, the effect of their combination is unknown and this forms the rationale for the present study. Methods. ASM cells from people with and without asthma were stimulated with TGFβ1 (1 ng/ml) with or without budesonide (10−8 M) and formoterol (10−10 and 10−8 M), and fibronectin expression and IL-6 release were measured by ELISA. Bronchial rings from nonasthmatic individuals were incubated with TGFβ1 (1 ng/ml) with or without the drugs, and fibronectin expression was measured using immunohistochemistry. Results. Budesonide stimulated fibronectin deposition, in the presence or absence of TGFβ1, and this was partially reversed by formoterol (10−8 M) in both asthmatic and nonasthmatic cells. Budesonide and formoterol in combination failed to inhibit TGFβ-induced fibronectin in either cell type. A similar pattern of expression of fibronectin was seen in bronchial rings. TGFβ1-induced IL-6 release was inhibited by the combination of drugs. Conclusion. Current combination asthma therapies are unable to prevent or reverse remodeling events regulated by ASM cells

    The potential of biomarkers of fibrosis in chronic lung allograft dysfunction

    Get PDF
    Chronic lung allograft dysfunction (CLAD) is the major long-term cause of morbidity and mortality after lung transplantation. Both bronchiolitis obliterans syndrome and restrictive lung allograft syndrome, two main types of CLAD, lead to fibrosis in either the small airways or alveoli and pleura. Pathological pathways in CLAD and other types of fibrosis, for example idiopathic pulmonary fibrosis, are assumed to overlap and therefore fibrosis biomarkers could aid in the early detection of CLAD. These biomarkers could help to differentiate between different phenotypes of CLAD and could, in comparison to biomarkers of inflammation, possibly distinguish an infectious event from CLAD when a decline in lung function is present. This review gives an overview of known CLAD specific biomarkers, describes new promising fibrosis biomarkers currently investigated in other types of fibrosis, and discusses the possible use of these fibrosis biomarkers for CLAD

    Basement membranes in obstructive pulmonary diseases

    Get PDF
    Increased and changed deposition of extracellular matrix proteins is a key feature of airway wall remodeling in obstructive pulmonary diseases, including asthma and chronic obstructive pulmonary disease. Studies have highlighted that the deposition of various basement membrane proteins in the lung tissue is altered and that these changes reflect tissue compartment specificity. Inflammatory responses in both diseases may result in the deregulation of production and degradation of these proteins. In addition to their role in tissue development and integrity, emerging evidence indicates that basement membrane proteins also actively modulate cellular processes in obstructive airway diseases, contributing to disease development, progression and maintenance. In this review, we summarize the changes in basement membrane composition in airway remodeling in obstructive airway diseases and explore their potential application as innovative targets for treatment development
    corecore